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Triangular Elements in the Finite Element Method 
By James H. Bramble and Milos Zlamal 

Abstract. For a plane polygonal domain a and a corresponding (general) triangulation 
we define classes of functions pm(x, y) which are polynomials on each triangle and which 
are in Cm)(Q) and also belong to the Sobolev space Wn'"'1(Q). Approximation theoretic 
properties are proved concerning these functions. These results are then applied to the 
approximate solution of arbitrary-order elliptic boundary value problems by the Galerkin 
method. Estimates for the error are given. The case of second-order problems is discussed 
in conjunction with special choices of approximating polynomials. 

1. Introduction. The classical Ritz and Galerkin method has several advantages 
over the finite-difference method. Nevertheless two things have prevented its more 
extensive use: 1. The practical construction of the basic functions in more dimensions 
was possible only for some simple domains. 2. Even for these domains the procedures 
can be highly unstable. 

The finite element method is nothing else than the Ritz or Galerkin method using 
special trial functions. The first idea goes back to Courant [9] who suggested tri- 
angulating the given domain and using functions which are linear on each triangle 
as trial functions for solving boundary value problems of the second order. This 
idea was rediscovered by the engineers and developed, originally as a concept of 
structural analysis, into a method called the finite element method (see Turner, 
Clough, Martin and Topp [15] and the references in Zienkiewicz [18]). Practical 
experience, the large amount of numerical results and the first theoretical results 
show that the finite element method removes the above mentioned shortcomings 
of the classical Ritz and Galerkin method. 

One feature of the procedures described by the engineers consists in introducing 
higher degree polynomials for interpolation of the solution on the given element. 
Some procedures of this kind for triangular elements were proposed and justified 
by the second of the authors [19]. For fourth-order equations the trial functions 
used are polynomials of the fifth degree.' The results and the method of [19] were 
generalized by Zenisek [17]. He proposed to use polynomials of the degree 4m + 1 
introduced later in this paper2 and he justified the method for m = 2, 3 (the case 
m = 1 being justified in [19]). 

The method of this paper differs completely from the method of [19]. A lemma 
about linear functionals on We* by Bramble and Hilbert [7] allows us to get general 
results for any m. We prove a general interpolation theorem and apply it to V-elliptic 
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boundary value problems of arbitrary order. The seminorm used in this paper for 
the discretization error is more appropriate than that used in [19]. 

2. Interpolation Polynomials on Triangles. To define the interpolation poly- 
nomials introduced by Zenisek [17] we denote by Pi (j = 1, 2, 3) the vertices of a 
triangle T,3 by (xi, y3) the coordinates of Pi, by P0 the center of gravity of T, by 14 
the sides of T, by v; the normals to 1i. We divide every side 1, in r + 1 equal parts 
(r =1, 2, *)by the points Q~P r) Cj = 1, 2, 3, p = 1, ... 0r. 

Now a polynomial pm(x, y) in two variables of the degree 4m + 1 (m = 0, 1, ...) 
has (2m + 1)(4m + 3) coefficients. Hence we cannot prescribe more than (2m + 1) 
*(4m + 3) conditions for such a polynomial. Let us prescribe the following values: 

(1) DtPm(P),4 i = 1, 2, 3, Iii < 2m, 

(2) a. j = 1, 2, 3, p 1, * *, r, r = 1, * * m, 

(3) D'Pm(PO), i| ? m - 2. 

We must add that we leave out the values (2) and (3) if m = 0 and m = 0, 1, 
respectively. Thus, p0(x, y) is a linear polynomial determined by the values of u(x, y) 
at the vertices of T and p,(x, y) is the polynomial introduced in [19, p. 404] and in 
the papers quoted in footnote 1. 

The importance of the polynomials pm(x, y) follows from the property proved 
in [17] which we formulate in this way: Suppose the values of the form (1), (2), (3) 
determine uniquely a polynomial pm(x, y) of the degree not greater than 4m + 1. 
Let Q be a polygonal domain triangulated by triangles {TJ} , and let values of 
the form (1), (2), (3) be prescribed at every vertex of the triangulation, at every point 
Q(P.r) and at every center of gravity. Then the function v(x, y) which on every Tk 
is equal to a polynomial p k(x, y) defined in the way just described belongs to C(`)(Q). 
Later we shall construct trial functions for the Galerkin method by means of the 
polynomials pm(x, y). First, we must, of course, prove the existence and uniqueness 
of p,,,(x, y). 

THEOREM 1. There exists exactly one polynomial pm(x, y) of the degree not greater 
than 4m + 1 assuming the values (1), (2), (3). 

Proof. The assertion is trivial for m = 0, hence we consider m >! 1. It is sufficient 
to prove that if 

(4) Dipm(Pj) 0, j = 1, 2, 3, lil 2m, 

(5) ar 0, j = 1, 2, 3, p -1, * , r, r -1, * ,m 
ai 

(6) Dipm(PO) 0, lil < m - 2, 

and p,,,(x, y) is a polynomial of a degree not greater than 4m + 1 then pm(x, y) = 0. 
(That is, the linearity of (1), (2) and (3) permits the uniqueness of their solution to 
imply existence of a solution.) 

8 At the same time T means the interior of T; it will always be clear what meaning of T is 
necessary to be taken. 

' Here I = (il. i2), jil = il + i2, Diu = oa siu/Oxilayi. 
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The derivatives ~rpm/Ova (r = 0. , m, j = 1, 2, 3) are Hermite polynomials 
(see, for instance, [5]) in one variable on the corresponding sides of the triangle T 
which, with respect to (4) and (5), assume homogeneous boundary values. Therefore 
they are identically equal to zero on the sides of T. Using the reasoning of the proof 
of Theorem 1 in [17] we find out that 

(7) D'Pm(Xv Y) 15T = 0, jij < m. 

Now let us consider the transformation 

(8) x = xQ, ) xI + (x2-Xl)t + (X3 - 

Y = A n)0 Yi + (Y2 - YD) + (Y3 - YD1 

and the polynomial pm(., q) = p,4x(Q, 77), y(, ?q)]. The equations (8) map T onto 
the triangle T, with vertices P1(O, 0), P2(1, 0), P3(0, 1). The points QP.pr) are mapped 
on the points Qip,) which again divide the new sides Ij into r + 1 equal parts and 
P0 is mapped on the center of gravity P0(4, 1) of the triangle T1. From (7) and (6) 
it follows that 

(9) Dpm(s, X7) 15T. = 0, jil < m, 

(10) Dip(PO) = 0, i1 < m - 2, 

(if we use the symbol D applied to functions of t and X we always mean a derivative 
with respect to t and 77; thus DVpm(Q, 71) = al~tI2m(Q, -)/(atii97'i2)). A consequence 
of (9) is that aOpm(Q, O)/la?' = 0 for 0 < ! < 1, r 0, . * * , m. Therefore pmQ, a) is 
divisible by qm+l Similarly, one can show that Pmr(Q, to) is divisible by (1 - t-)"' 
and by t"'l . Hence, if m = 1 it must be that p, , -) 0, and consequentlyp,(x, y) _ 0, 
and if m > 2 

pf(tQ 7U) = [tIO(I 77)]+lQ(Q 71), 

where Q(Q, -q) is a polynomial of the degree not greater than m - 2. Now it is sufficient 
to use (10). Since [~tq(1 - - # 0 we get 

D Q(Po)= O, jij < m-2, 

and since Q(Q, q) is a polynomial of the degree not greater than m - 2 it follows 
that Q(Q, 7) - 0, hence pmQ 7) =- 0 and pf(x, y) 3 0. 

Next what we need is some estimate of the error arising when we approximate 
a function u(x, y) E C"2?")(T) by a polynomial pf(x, y). We will say that pm(x, y) is 
the interpolation polynomial corresponding to u(x, y) if 

(11) Dipm(Pj) = Diu(Pj), i 1, 2, 3, tij : 2m, 

(12) tpm"(Q<Prt))/Ov = Oru(Q(Pr))/1vl: 

i = 1, 2, 3, p = 1, ,r, r= 1, , 

(13) DiPm(PO) = Dtu(Po), jil < m - 2. 

To get the estimate we make use of a lemma by Bramble and Hilbert [7]. First we 
introduce some notation. By W'k)(Q) we denote the Hilbert space of all functions 
which together with their generalized derivatives up to the kth order belong to L2(Q). 
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The norm is given by 
k 

| |U| |k.Q = Ej |Ujl,g where | = Ju | |D'uhI2(n)E 
i=1 Ii D2i 

LEMMA.5 Let Q be a bounded domain in EN with diam (Q) = 1. Assume that ?Q satisfies 
the ordinary cone condition (see [1]). Let F(u) be a bounded linear functional on W(k)(Q), 

IF(u)I ?C1 I IUIIk, , 

and let F(q) 0 for every polynomial q of the degree less than k. Then there exists a 
constant C2 depending on the cone condition only such that 

(14) |F(u)l I-< C1 C2 I U Ik, 

for all u E W2()(Q). 

THEOREM 2. Let u(x, y) E W(k)(T) where 2m + 2 <? k ? 4m + 2. Let p,(x, y) 
be the interpolation polynomial corresponding to u(x, y). Then, for 0 ? n < k, 

(15) |1 u - Pm|1nh ,T = (si Km+n Ck-n lUliT, 

where the constant K does not depend on the triangle T and the function u and where a 
is the smallest angle and c is the length of the greatest side of T. 

Proof. We denote by a ? f3 < y the angles of the triangle T and we choose the 
notation of the vertices such that a lies at P1, f3 at P2 and y at P3. The lengths of 
the sides are denoted by a, b, c, a being the smallest and c the greatest. As a + b > c 
we have b > 1c. The area of T is equal to one half of [JI where J is the Jacobian 
of the transformation (8) so that 

1 2 
1 J1- = l< 2_. bc sin a c sin < 

For the inverse transformation to (8) we easily find out that 

(16) ~~~~~~a~ a~ a77 a7 2 
(16) |dx 'a|dy| ' |dx ' Ox y|y c sin a 

Let us denote w(x, y) = u(x, y) -pm(x, y) and consider the function itz, n) = 

w[x(Q, 7), y(Q, n)]. The derivatives Div(-, 7) are linear combinations of the derivatives 
Dtw(x, y) and using (16) we easily obtain 

(17) hIW||nT -< (in I i A 1 11 | n, T, 

Here K1 is a constant which does not depend on T and the functions considered 
(in the sequel we shall denote such constants by K1, K2, *.). 

Now to get an estimate for I IZ'I Tv we apply the Lemma. Let us consider the 
linear functional F(?2) = (9 - Pi, V)nT1 on W(k)(T,) where (?v, V)n, T1 means the scalar 
product in W(n)(T,) and v is an arbitrary function from Wn I(T,). If u(a, tq) is a polyp 
nomial of the degree less than k then u(x, y) is also a polynomial of the degree less 

5Actually, it is true for more general spaces W(') () and the formulation introduced here 
differs a little from the formulation introduced in [7]. 
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than k. For k ? 4m + 2 it follows by Theorem 1 that u(x, y) - pm(x, y) =_ 0, hence 

(9 71) - pm(, 71) 9 0 and F(f) = 0. Further, 

IF(f)j ?< IIVIIn,T. KlU .|- flnn,T, <_ |IkIn,T. {IIUIckT. + flrlIolk.T.1} 

Assume we succeed in proving 

(18) 11P. kT < K2 
I Jll Ike T. (18) ~~~~~~~~~(sin a)' 

Then 

I F(2) I < K3 i IVI1nT1. T iUIk,T. -(sina) 

and applying the Lemma (actually in our case diam (Q) = diam (T1) = V/2; however 
obviously (14) is also true with C2 being an absolute constant) we have 

jF<) K4 jtkT 
I F()| '- =(sin a)r M JIV11n. lillkT. 

Choosing v = f-t we get 

ilz P 11 <T 
K4 

;likT. 
ju - fmlrInjtnT1 = (sin a)UIITi. 

From (17) it follows 

HU - PrnIInT 
< 

Ki ,J1n I | J I 
|f Ik, T, 

=(sin a)m+nC 

and since 

jUjik.T. - K6C | JIjl2 IUlk,T 

the final result is the estimate (15). 
To prove (18) we remark that the polynomial 1fm(, n) is, according to Theorem 1, 

uniquely determined by the values 

D ifm(Pj), I = 1, 2, 3, jil < 2m, 

arOn(Q2P7r))/1P, I = 1, 2, 3, p = 1, , r, r = 1, , 

Dt(Po), ji m - 2. 

If we order these values in some way and denote by aj (j = 1, * , No = (2m + 1) 

*(4m + 3)), it obviously holds that pm(, a) = : Pol airiQ(, r7), where rjQ, q) are poly- 
nomials such that from the above-mentioned No values one of their values is equal to 1 

and the others are zero. Hence, the polynomials rj(Q, q) as well as their derivatives 

of an arbitrary order are bounded by absolute constants and it is sufficient to prove that 

(19) lail < (K7 Ii 1 1Uk, To . 

Now from (11) and (13) it follows immediately 

(20) D'pm(Pj) = Dtiz(Pj), j = 1, 2, 3, jil < 2m, 

Dipm(Po) = Dtf(Po), jil < m - 2, 
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so that for these values we get (19) by means of the Sobolev lemma (actually, (19) is 
true even without the factor 1/(sin a)'). 

To prove (19) for the remaining values we first notice the following formula. 
Let the direction I make an angle p with the positive s-axis and let v be the direction 
perpendicular to 1. Let r be a direction making an angle co with the positive t-axis 
and let Of(P)/Or = 0. Then 

(21) Of(P)IOP = -qdf(P)1Ol, a = cot g( - ) 

(the Eq. (21) follows from the formula Of/ar = cos (co - p) af/dl + sin (co - ?)af/av). 
Further we notice that the condition (12) is just the condition 

r-p (I jP'r))/Or = Org&QP'r))/Or! 

where Tj (j = 1, 2, 3) are certain directions which are easy to find. Apply now (21) 
to f = X,,,- i and to I = ri, T= r. By elementary calculations, which we leave 
out, we get 

(22) d9p(Q('l1)) 
- 

_______+ aidu(Q .')) a dffm(Q1 ) 

where 

t(X2 -X1)(X3 - X1) + (Y2 -YI)(Y3 - I)2I = C2 - b2 
2G2 2 

c a 

la - Xl)(x3 - XI) + (Y2 - Y)(YY3 - 

b2 

u1 and q3 are bounded by absolute constants: 

jFTij S bc/c2 < 1, jlTaj K bc/b2 < 2, 

whereas q2 is not bounded by an absolute constant.8 However, 

Ik21 = (c - b)(c + b)/a2 < 2ac/a2 ? 2/sin a. 

Since pm is a Hermite interpolation polynomial in one variable on the sides of T. 
which is determined by the values (20) it follows from (22) by means of the Sobolev 
lemma that 

_________) < K 
sina I I I U|Ik. T. T 

In general, we get 

|d i( =]' (sin a)? IUII1,T, r = 1, , 

if we proceed by induction and use the formula 

which holds if Orf(P)/Or' = 0. 

6 There are triangles for which (c - b2)/a2 2 1 /2sin a. 
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Remark. In a similar way one can prove 

max I 'u- p,)I< K 
jI'l -/2 Ck-Ii I IU IAkT 

T (sin a)m+ iI 

if 

2m + 2 < k < 4m + 2, jil j k-2. 

3. Application to V-Elliptic Boundary Value Problems. Let a be a bounded 
simply or multiply connected domain in E2 with a boundary r consisting of a finite 
number of polygons rI (} = O, 1, *. *, s); rm, * *, r, lie inside of r1' and do not 
intersect. This assumption enables one to triangulate U. Let V be a Hilbert space 
such that 

W2 (Q) C V C W2n (Q), 

with the norm induced by Wn) Here, W)() is the completion with respect 
to the norm | I K of functions from C<@>(Q) with compact support in Q. Let a(u, v) 
be a bilinear form continuous on V X V and V-elliptic, i.e., a mapping (u, v) -+ 

a(u, v) from V X V into the field of complex numbers which is linear in u, antilinear 
in v and satisfies the conditions of boundedness and coerciveness 

(23) Ia(u,v)I < M jjUj|n l|Viin I Vu,v E V, M = const > 0, 

(24) Re a(v, v) > a iivil2, Vv E V, a = const > 0. 

Finally, let L(v) be an antilinear functional continuous on V. Under these conditions 
there exists just one u E V such that 

(25) a(u, v) = L(v), Vv E V, 

(see Lions and Magenes [13]). 
We shall approximate the problem (25) by the Galerkin method (see CUa [8]) 

using the following finite-dimensional subspaces V' of V. We triangulate Q, i.e., 
we cover Q by a finite number of arbitrary triangles such that any two triangles are 
either disjoint or have a common vertex or a common side. To every triangulation 
we associate two parameters: h, 6. h is the largest side and 6 the smallest angle of 
all triangles of the given triangulation. In the sequel we assume that as h O-* 0, 
remains bounded away from zero, 

(26) a > 0 > O. 

Now V: is the finite-dimensional subspace of V consisting of all functions which 
on the triangles of the given triangulation are equal to polynomials pm(x, y) intro- 
duced in the preceding section. Every function from V' belongs to C'")(Q) and, 
at the same time, to W2'+l)(O). 

Let us consider the problem of finding u- such that 

(27) a(uZ, v) = L(v), Vv E VZh. 

THEOREM 3. Let n ? m + 1. Under the assumptions (23), (24) and (26) there exists 

I In this and the last section we write I I 1 In instead of I I In and I In instead of I H 
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just one u" E V: satisfying (27) and 

(28) u - uh 0 as h -O. 

Proof. It is an immediate consequence of the theorem by Cea about the Galerkin 
method (see [8, p. 363, Theoreme 3.1]) and of Theorem 2 proved in Section 2. We 
must show that the subspaces Vh have the following property of density: there is 
a subspace V C V which is dense in V and a family of linear operators r" from V 
into V5 such that 

(29) Iv - rvj IO. - , v Ev as h -O. 

For co we choose functions from V belonging to W2'k)(P) with 2m + 2 < k ? 4m + 2. 
As k > 2m + 2 it follows by Sobolev's lemma that VCc C 2m'(Q). rnv is then the 
function which on every triangle of the corresponding triangulation is equal to the 
interpolation polynomial pm(x, y) corresponding to v(x, y). According to (15) and (26) 
we have 

|jv - rhin I .T < Koh2(kn) IV1IkT 

Hence, 

(30) |jv - raV|II n <K11 IvIkh 

and (29) follows. 
Theorem 3 proves only the convergence of the finite element method. Of course, 

we did not ask more than that the solution u of the boundary value problem (25) 
of the 2nth order belongs to W2 >(Q). If we suppose more about the smoothness 
of u we get an asymptotic estimate of the rate of convergence: 

THEOREM 4. Suppose that the form a(u, v) is Hermitian. Let the assumptions of 
Theorem 3 hold and let 

U(X, y) W2)() 2m + 2 < k 4m + 2. 

Then 

(31) | ju - Uh I In < K IUlkh, 

where the constant K does not depend on the triangulation and on the solution u. 
Proof We use a lemma by Cea [8, p. 365, Proposition 3.1]. According to the 

inequality 3.14 of this lemma 

I U- - Uh'j ? (M/la)12 | u - rh ujj 

holds. As u E W(k)((Q) we can set v = u in (30) and the proof is finished. 
In case n = 2, m = 1, (31) gives 

|jju - uh 112 ? K IUAkh, 4 < k < 6, 
for u E W(k)(Q). The highest order of accuracy is attained for k = 6, 

I|u -u 14212 ? K lUl6Ih . 

This result is a generalization of the result of [19] where instead of Jul, the seminorm 
M6 = supo Diul, il = 6, is used. In the same way we get for n = 3, m = 2 and 
n = 4, m = 3 the generalization of the results of [17]. 
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4. Some Special Cases. 1. To get the asymptotic estimate (31) we had to assume 
a greater smoothness of the solution u(x, y) than that guaranteed by the conditions 
(23) and (24) which, on the other hand, are sufficient for the uniqueness and exis- 
tence of u(x, y). In one case we need not impose any additional condition on the 
smoothness of the solution and yet we obtain an asymptotic error estimate, even in 
terms of data only. Consider, namely, the Dirichlet problem 

(32) Lu + au ( Px) 

on a convex polygon U. Let us assume that 

(33) aik(x, y) E C<?'1>(Q), a(x, y), f(x, y) E L2(Q) (I, k = 1, 2), 

that the operator Lu is uniformly elliptic, 
2 2 

A ajA(x, Y)Uk ?_! E a0 , a' > const > 0, 
ik-1 

and that a(x, y) > 0. Then the form a(u, v) corresponding to the above Dirichlet 
problem, 

a(u, )= I: ak - + auv] dx dy, 

is 47')(i)-elliptic. According to a theorem of Kadlec [11] the solution u(x, y) belongs 
to W'2'()and 

(34) IjUl12 ? C IIfIIL,(Q), 
where the constant C depends only on the coefficients of the operator Lu and on 
the domain U. Actually, the result is stated in [11] for the equation 

Lou 2 " ( ak) 

However, if we write (32) in the form Lou = -au + f we see that the right-hand 
side belongs to L2(A). By the theorem of Kadlec 

IjU112 ? C II-au + f11L,(Q) < C(K12 jjujj1 + I1fI1L2(Q)). 

As a(u, u) = (Lu, 
U)L, 

for u C W2(2) (Qn w0'(0) it follows from the W'1`(Q)-ellip- 
ticity of a(u, v) that I I a I 1u _ (I/a)l I Lf . Hence (34) is true. Now the assumptions 
of Theorem 4 are satisfied (n = 1, m 0, k = 2) and we have the following. 

THEOREM 5. Let Q be a convex polygon and suppose that the real coefficients and 
the right-hand side of Eq. (32) satisfy (33). Further, let Lu be uniformly elliptic and 
let a(x, y) > 0. Then 

(35) jju - Uh|1l < C IIfIIL.(n)h, 

where the constant C depends on the coefficients of Lu and on the domain Q only. 
Using an argument similar to that of Nitsche [14] we can obtain the additional 

result 

(36) Hu - UhIIL.(0) < Ch2 I1fI1L,(Q)) 
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Remark. The estimate of the form (36) is also given in the paper by L. A. Oganesjan, 
P. A. Ruchovec: "Investigation of the convergence rate of variational-difference 
schemes for elliptic second order equations in a two-dimensional domain with a 
smooth boundary," 2. Vyais1. Mat. i Mat. Fiz., v. 9, 1969, 1102-1120. (Russian) 

The proof is as follows: Write 

H|U - uah su j(u - su, , h)o 
I 

h 
*EL2n) 10 Ito 

Now let 4) satisfy 

a(v, O) = (v, AOo, Vv EE W2 

Then, as in (34), we have 114112 < Cljjjo. Hence, 

(37) 1u - ulo0 < C sup Ia(u -A, 
u I/)/112 

But 

a(u - 
uO, 

p) = a(u - O,- 0 ) ' E Vh. 

Hence, 

(38) ja(u - uO, 4)1 < M I I u - u I 1 -| 11i. 
Choose 1 such that 

(39) I -' IIj, -< K13 11t112 h 

Then (37), (38) and (39) imply 

H|U - Uh|tO < K14h tIu - uhIII. 

This together with Theorem 5 yields the result. 
2. In [19] there was also introduced a cubic polynomial p(x, y) determined by 

ten values 

p(PO), Op(Pl)/Ox, Op(P,)/Oy, p(PO), 3 1, 2, 3. 

This element can be used for solving second-order boundary value problems. It is 
easy to show, in the same way as Theorem 2 was proved, that 

HjU - P|InT < K 
* )r IU UIk,T, k = 3, 4, n ; k, -(sin a)- 

if u E W'`)(T). For the corresponding finite element procedure (again under the 
assumptions (23), (24) and (26)) it follows first that it converges in the l norm, 
and secondly that 

IIU - Uhl II < K Ujk hkl, k = 3, 4, 
if u EE W2Vk) (Q). For k = 4 this result is a generalization of the estimate (13) in [19]. 

3. The polynomial p,(x, y) is a 21-degree-of-freedom element. However, the 
values ap1(Q1'1 ))/avj (j = 1, 2, 3) are not necessary in applications. Bell proposed 
in [3] (also Goel in [10]) an 18-degree-of-freedom element and applied it to bending 
of thin plates. We get it from p1(x, y) if we eliminate the three above mentioned 
values by imposing on p,(x, y) the condition that 0p,/Ovj (j 1, 2, 3) be cubic 
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polynomials on the corresponding sides of T. In general, 0p,/0v9 is a polynomial 
of the fourth degree in one variable on the side I of T and it is easy to see that the 
above condition determines uniquely the values ap,(Q ',1)/avj as linear combina- 
tions of the remaining 18 values 

Dlpl(Pi), j = 1, 2, 3, 11 ? 2. 

We denote this 18-degree-of-freedom element by q(x, y). If we inspect the proof 
of Theorem 2, we easily find out that an estimate corresponding to (18) is again 
true in case of the element q(x, y) and that the only change is that the functional 
F vanishes for polynomials of the degree less than 5, whereas, in case of p,(x, y) it 
vanishes for polynomials of the degree less than 6. We have 

IIU - q I I ( j iK C IUIk,T, n = 1, 2, k = 4, 5, -(sin acn) 

if u E W'(T). For the corresponding finite element procedure (again under the 
assumptions (23), (24) and (26)), it follows first that it converges in the norm 
and I V112, respectively, and secondly that 

|Iu - uhtalnj K tuJkh h n = 1, 2, k = 4, 5, 

if u E W'"'(0). Thus, for bending of thin plates the highest order of accuracy is 
the third order. 

Similarly one can generalize the results of [20] where, by eliminating the value 
p(P0) from the cubic element p(x, y), there was constructed a 9-degree-of-freedom 
element. 

4. For practical applications it is desirable (see [20, p. 395]) that as many param- 
eters determining the polynomials as possible are prescribed at the vertices only. In 
[12] it is remarked that in the case of polynomials of degree 4m + 1 and 4m + 3 
(see footnore 2) the parameters prescribed on the sides of the triangle can be elimi- 
nated by imposing on the polynomials the condition that the normal derivatives of 
the kth order be polynomials of degree n - 2k along the sides of the triangle. For 
the corresponding finite element procedure one can easily prove that 

| u -L1u4hfn ? K Iulkh 

for 2m + 2 ? k ? 3m + 2 and 2m + 3 ? k ? 3m + 4, respectively, if n ? m + 
1 and u E W2"(0) 

It is also possible to eliminate the parameters prescribed at the center of gravity 
by imposing some restrictions on the polynomials. However, in this case a better 
practical way is to retain them and to use the method of condensation of internal 
parameters (see [21] or [22]). 
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